2,513 research outputs found

    (Broken) Gauge Symmetries and Constraints in Regge Calculus

    Full text link
    We will examine the issue of diffeomorphism symmetry in simplicial models of (quantum) gravity, in particular for Regge calculus. We find that for a solution with curvature there do not exist exact gauge symmetries on the discrete level. Furthermore we derive a canonical formulation that exactly matches the dynamics and hence symmetries of the covariant picture. In this canonical formulation broken symmetries lead to the replacements of constraints by so--called pseudo constraints. These considerations should be taken into account in attempts to connect spin foam models, based on the Regge action, with canonical loop quantum gravity, which aims at implementing proper constraints. We will argue that the long standing problem of finding a consistent constraint algebra for discretized gravity theories is equivalent to the problem of finding an action with exact diffeomorphism symmetries. Finally we will analyze different limits in which the pseudo constraints might turn into proper constraints. This could be helpful to infer alternative discretization schemes in which the symmetries are not broken.Comment: 32 pages, 15 figure

    Curved planar quantum wires with Dirichlet and Neumann boundary conditions

    Full text link
    We investigate the discrete spectrum of the Hamiltonian describing a quantum particle living in the two-dimensional curved strip. We impose the Dirichlet and Neumann boundary conditions on opposite sides of the strip. The existence of the discrete eigenvalue below the essential spectrum threshold depends on the sign of the total bending angle for the asymptotically straight strips.Comment: 7 page

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    QED effective action at finite temperature

    Get PDF
    The QED effective Lagrangian in the presence of an arbitrary constant electromagnetic background field at finite temperature is derived in the imaginary-time formalism to one-loop order. The boundary conditions in imaginary time reduce the set of gauge transformations of the background field, which allows for a further gauge invariant and puts restrictions on the choice of gauge. The additional invariant enters the effective action by a topological mechanism and can be identified with a chemical potential; it is furthermore related to Debye screening. In concordance with the real-time formalism, we do not find a thermal correction to Schwinger's pair-production formula. The calculation is performed on a maximally Lorentz covariant and gauge invariant stage.Comment: 9 pages, REVTeX, 1 figure, typos corrected, references added, final version to appear in Phys. Rev.

    Regge calculus from a new angle

    Full text link
    In Regge calculus space time is usually approximated by a triangulation with flat simplices. We present a formulation using simplices with constant sectional curvature adjusted to the presence of a cosmological constant. As we will show such a formulation allows to replace the length variables by 3d or 4d dihedral angles as basic variables. Moreover we will introduce a first order formulation, which in contrast to using flat simplices, does not require any constraints. These considerations could be useful for the construction of quantum gravity models with a cosmological constant.Comment: 8 page

    Simplicity in simplicial phase space

    Full text link
    A key point in the spin foam approach to quantum gravity is the implementation of simplicity constraints in the partition functions of the models. Here, we discuss the imposition of these constraints in a phase space setting corresponding to simplicial geometries. On the one hand, this could serve as a starting point for a derivation of spin foam models by canonical quantisation. On the other, it elucidates the interpretation of the boundary Hilbert space that arises in spin foam models. More precisely, we discuss different versions of the simplicity constraints, namely gauge-variant and gauge-invariant versions. In the gauge-variant version, the primary and secondary simplicity constraints take a similar form to the reality conditions known already in the context of (complex) Ashtekar variables. Subsequently, we describe the effect of these primary and secondary simplicity constraints on gauge-invariant variables. This allows us to illustrate their equivalence to the so-called diagonal, cross and edge simplicity constraints, which are the gauge-invariant versions of the simplicity constraints. In particular, we clarify how the so-called gluing conditions arise from the secondary simplicity constraints. Finally, we discuss the significance of degenerate configurations, and the ramifications of our work in a broader setting.Comment: Typos and references correcte

    Lamm, Valluri, Jentschura and Weniger comment on "A Convergent Series for the QED Effective Action" by Cho and Pak [Phys. Rev. Lett. vol. 86, pp. 1947-1950 (2001)]

    Get PDF
    Complete results were obtained by us in [Can. J. Phys. 71, 389 (1993)] for convergent series representations of both the real and the imaginary part of the QED effective action; these derivations were based on correct intermediate steps. In this comment, we argue that the physical significance of the "logarithmic correction term" found by Cho and Pak in [Phys. Rev. Lett. 86, 1947 (2001)] in comparison to the usual expression for the QED effective action remains to be demonstrated. Further information on related subjects can be found in Appendix A of hep-ph/0308223 and in hep-th/0210240.Comment: 1 page, RevTeX; only "meta-data" update

    Note About Hamiltonian Formalism of Healthy Extended Horava-Lifshitz Gravity

    Get PDF
    In this paper we continue the study of the Hamiltonian formalism of the healthy extended Horava-Lifshitz gravity. We find the constraint structure of given theory and argue that this is the theory with the second class constraints. Then we discuss physical consequence of this result. We also apply the Batalin-Tyutin formalism of the conversion of the system with the second class constraints to the system with the first class constraints to the case of the healthy extended Horava-Lifshitz theory. As a result we find new theory of gravity with structure that is different from the standard formulation of Horava-Lifshitz gravity or General Relativity.Comment: 17 pages, v.2. references added, v.3. typos corrected, references adde

    Spectral Statistics in Chaotic Systems with Two Identical Connected Cells

    Full text link
    Chaotic systems that decompose into two cells connected only by a narrow channel exhibit characteristic deviations of their quantum spectral statistics from the canonical random-matrix ensembles. The equilibration between the cells introduces an additional classical time scale that is manifest also in the spectral form factor. If the two cells are related by a spatial symmetry, the spectrum shows doublets, reflected in the form factor as a positive peak around the Heisenberg time. We combine a semiclassical analysis with an independent random-matrix approach to the doublet splittings to obtain the form factor on all time (energy) scales. Its only free parameter is the characteristic time of exchange between the cells in units of the Heisenberg time.Comment: 37 pages, 15 figures, changed content, additional autho
    • 

    corecore